ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1984]      



Задача 64707

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Витя хочет найти такое выражение, состоящее из единиц, скобок, знаков "+" и "×" что
  - его значение равно 10;
  - если в этом выражении заменить все знаки "+" на знаки "×", а знаки "×" на знаки "+", всё равно получится 10.
Приведите пример такого выражения.

Прислать комментарий     Решение

Задача 64713

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.

Прислать комментарий     Решение

Задача 64719

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 9,10,11

Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Прислать комментарий     Решение

Задача 65186

Темы:   [ Задачи на движение ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг?

Прислать комментарий     Решение

Задача 65187

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Внутри параллелограмма ABCD отметили точку E так, что  CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .