Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Рассматриваются всевозможные десятизначные числа, записываемые при помощи двоек и
единиц. Разбить их на два класса так, чтобы при сложении любых двух чисел каждого
класса получалось число, в написании которого содержится не менее двух троек.
Числа 1, 2, ..., 49 расположены в квадратную таблицу
Произвольное число из таблицы выписывается, после чего из таблицы вычёркивается
строка и столбец, содержащие это число. То же самое проделывается с оставшейся
таблицей и т.д., всего 7 раз. Найти сумму выписанных чисел.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
2n = 10a + b. Доказать, что если n > 3, то ab делится на 6. (n, a и b – целые числа, b < 10.)
Квадратная таблица из 49 клеток заполнена числами от 1 до 7 так, что в
каждом столбце и в каждой строке встречаются все эти числа. Докажите, что если таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встречаются все эти числа.
|
|
|
Сложность: 3+ Классы: 10,11
|
Числа 1, 2, ..., k² расположены в квадратную таблицу
Произвольное число выписывается, после чего из таблицы вычеркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей из (
k – 1)² чисел и т.д.
k раз. Найти сумму выписанных чисел.
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1984]