Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 10,11
|
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
a1 – 3a2 + 2a3 ≥ 0,
a2 – 3a3 + 2a4 ≥ 0,
a3 – 3a4 + 2a5 ≥ 0,
...,
a99 – 3a100 + 2a1 ≥ 0,
a100 – 3a1 + 2a2 ≥ 0.
Доказать, что все числа ai равны между собой.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Найти все действительные решения уравнения x² + 2x sin(xy) + 1 = 0.
|
|
|
Сложность: 3+ Классы: 10,11
|
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
a1 – 4a2 + 3a3 ≥ 0,
a2 – 4a3 + 3a4 ≥ 0,
a3 – 4a4 + 3a5 ≥ 0,
...,
a99 – 4a100 + 3a1 ≥ 0,
a100 – 4a1 + 3a2 ≥ 0.
Известно, что a1 = 1, определить a2, a3, ..., a100.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что AB = CD, AD = BC и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.
|
|
|
Сложность: 3+ Классы: 10,11
|
Сколько плоскостей симметрии может иметь треугольная пирамида?
Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1984]