Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 1982]      



Задача 98296

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

Прислать комментарий     Решение

Задача 105048

Темы:   [ Разные задачи на разрезания ]
[ Наименьший или наибольший угол ]
Сложность: 3+
Классы: 7,8,9

Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).
Прислать комментарий     Решение


Задача 105052

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

Прислать комментарий     Решение

Задача 105054

Темы:   [ Теория игр (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9,10

Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

Прислать комментарий     Решение

Задача 105061

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Прислать комментарий     Решение

Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .