ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 67013

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Прислать комментарий     Решение


Задача 67043

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел — это 2·3=6, и 2 — число интересное). Какое наибольшее количество интересных чисел может идти подряд?
Прислать комментарий     Решение


Задача 67062

Темы:   [ Задачи на движение ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10

Автор: Рубин А.

Два человека шли по прямой дорожке навстречу друг другу с постоянными скоростями, но один – медленно, другой – быстро. Одновременно каждый отпустил вперёд от себя собаку (собаки бежали с одной и той же постоянной скоростью). Каждая собака добежала до другого хозяина и возвратилась к своему. Чья собака вернулась раньше – быстрого хозяина или медленного?
Прислать комментарий     Решение


Задача 67063

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8,9,10

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее. Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?
Прислать комментарий     Решение


Задача 67064

Темы:   [ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .