ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите тождество  

Вниз   Решение


Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.

Вверх   Решение

Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2404]      



Задача 109229

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.
Прислать комментарий     Решение


Задача 109230

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите плоский угол при вершине пирамиды.
Прислать комментарий     Решение


Задача 109231

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.
Прислать комментарий     Решение


Задача 109232

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Двугранный угол при основании правильной n -угольной пирамиды равен β . Найдите двугранный угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .