ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.

Вниз   Решение


Автор: Фольклор

Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.

ВверхВниз   Решение


Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

ВверхВниз   Решение


В трапеции ABCE основание AE равно 16, CE = 8$ \sqrt{3}$. Окружность, проходящая через точки A, B и C, вторично пересекает прямую AE в точке H; $ \angle$AHB = 60o. Найдите AC.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 403]      



Задача 64804

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 9,10

Пусть ABCD – вписанный четырёхугольник. Докажите, что  AC > BD  тогда и только тогда, когда  (AD – BC)(AB – CD) > 0.

Прислать комментарий     Решение

Задача 66835

Темы:   [ Ортоцентр и ортотреугольник ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.

Прислать комментарий     Решение

Задача 111456

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Диаметр, основные свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник с острым углом α расположен внутри окружности радиуса R так, что гипотенуза треугольника является хордой окружности, а вершина прямого угла треугольника лежит на диаметре, параллельном гипотенузе. Найдите площадь этого треугольника.

Прислать комментарий     Решение

Задача 116832

Темы:   [ Центр масс ]
[ Хорды и секущие (прочее) ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.

б) Внутри окружности находится правильный 2n-угольник  (n > 2),  его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.

Прислать комментарий     Решение

Задача 52805

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 403]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .