ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 [Всего задач: 239]      



Задача 109840

Темы:   [ Геометрия на клетчатой бумаге ]
[ Целочисленные решетки (прочее) ]
[ Алгебраические методы ]
[ Метод координат на плоскости ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Теория игр (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

В клетчатом прямоугольнике 49×69 отмечены все 50· 70 вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 65939

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109826

Темы:   [ Вневписанные окружности ]
[ Радикальная ось ]
[ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Окружность, вписанная в угол ]
[ Отношения линейных элементов подобных треугольников ]
[ Центральная симметрия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9,10,11

Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .