ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?
Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если CD=6
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если BE=26 , DE=9 Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз).
Могли ли оказаться отмечены Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1. Пусть P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17. Найдите При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение. а) Докажите, что среди всех n-угольников, описанных около данной
окружности, наименьшую площадь имеет правильный n-угольник.
а) Докажите, что среди всех n-угольников, вписанных в данную
окружность, наибольшую площадь имеет правильный n-угольник.
Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]
Высота правильной четырёхугольной пирамиды вдвое больше диагонали её основания, объём пирамиды равен V . Рассматриваются правильные четырёхугольные призмы, вписанные в пирамиду так, что их боковые рёбра параллельны диагонали основания пирамиды, одна боковая грань принадлежит этому основанию, вершины противоположной боковой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 4:1, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.
Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
Основанием прямоугольного параллелепипеда ABCDA1B1C1D1 является квадрат ABCD . Найдите наибольший возможный угол между прямой BD1 и плоскостью BDC1 .
В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 найдите наибольший возможный угол между прямой AE1 и плоскостью BC1E1F .
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке