Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 829]
Отрезки AB и CD не параллельны и не пересекаются. Точка P
лежит на отрезке AB, а точка Q – на отрезке CD. Точки
K, L, M и N – середины отрезков AQ, BQ, CP и DP
соответственно. Докажите, что отрезки KL, MN и PQ пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC проведена биссектриса BB1.
Перпендикуляр, опущенный из точки B1 на BC, пересекает дугу BC описанной окружности треугольника ABC в точке K.
Перпендикуляр опущенный из точки B на AK пересекает AC в точке L. Докажите что точки K, L и середина дуги AC (не содержащей точку B) лежат на одной прямой.
Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P (P ≠ H). Докажите, что прямая PH проходит через середину отрезка MN.
Пусть I и IA – соответственно центры вписанной и вневписанной окружностей треугольника ABC. Прямая lA проходит через ортоцентры треугольников BIC и BIAC. Аналогичным образом определяются прямые lB и lC . Докажите, что прямые lA, lB и lC пересекаются в одной точке.
Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам.
Докажите, что эти диагонали пересекаются в одной точке.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 829]