Страница:
<< 102 103 104 105 106
107 108 >> [Всего задач: 538]
|
|
Сложность: 4 Классы: 10,11
|
Шар, вписанный в правильную пирамиду
ABCD , касается грани
ADC в
точке
K . Через сторону
AB основания
ABC пирамиды и точку
K
проведено сечение. Найдите площадь этого сечения, если сторона основания
пирамиды равна
b , а высота пирамиды равна
b .
|
|
Сложность: 4 Классы: 10,11
|
Bсе ребра правильной четырехугольной
пирамиды равны 1, а все вершины лежат на боковой поверхности
(бесконечного) прямого кругового цилиндра радиуса R.
Найдите все возможные значения R.
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
а) не меньше пяти рёбер,
б) ровно пять рёбер?
|
|
Сложность: 5 Классы: 10,11
|
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
|
|
Сложность: 7 Классы: 10,11
|
Дана сфера
радиуса 1. На ней расположены равные окружности γ
0, γ
1, ..., γ
n радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ
1, ..., γ
n; кроме того, касаются друг друга окружности γ
1 и γ
2, γ
2 и γ
3, ..., γ
n и γ1. При каких
n это возможно? Вычислите соответствующий
радиус r.
Страница:
<< 102 103 104 105 106
107 108 >> [Всего задач: 538]