ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 [Всего задач: 114]      



Задача 115900

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Белухов Н.

Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.

Прислать комментарий     Решение

Задача 64760

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Проективная геометрия (прочее) ]
Сложность: 5

Дан выпуклый четырёхугольник ABCD. Пусть I и J – центры окружностей, вписанных в треугольники ABC и ADC соответственно, а Ia и Ja – центры вневписанных окружностей треугольников ABC и ADC, вписанных в углы BAC и DAC соответственн). Докажите, что точка K пересечения прямых IJa и JIa лежит на биссектрисе угла BCD.

Прислать комментарий     Решение

Задача 52460

 [Теорема о бабочке]
Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Радикальная ось ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 5-
Классы: 8,9

Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

Прислать комментарий     Решение

Задача 65800

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
[ Радикальная ось ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теоремы Чевы и Менелая ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 [Всего задач: 114]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .