ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 27 28 29 30 31 32 33 [Всего задач: 165]
В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC?
Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.
На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы. а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна? б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2. в) Докажите, что для любого числа s>1/2 существует надёжная система бойниц с суммарной длиной, меньшей s.
Страница: << 27 28 29 30 31 32 33 [Всего задач: 165] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|