ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

Вниз   Решение


Докажите, что  2n > (1 – x)n + (1 + x)n  при целом  n ≥ 2  и  |x| < 1.

Вверх   Решение

Задачи

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 2404]      



Задача 87486

Темы:   [ Отношение объемов ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка K – середина ребра AP , точка N расположена на ребре CP , причём CN:NP = 1:3 , точка M расположена на продолжении ребра BC за точку B , причём BM = 2BC . Постройте сечение пирамиды плоскостью, проходящей через точки K , M , N . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 87487

Темы:   [ Отношение объемов ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка M – середина ребра CP , точка N расположена на ребре AP , причём AN:NP = 2:3 , точка K расположена на ребре BP , причём PK = 2KB . Постройте сечение пирамиды плоскостью, проходящей через точки K , M , N . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 87499

Темы:   [ Правильная пирамида ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна a , высота пирамиды равна 2a . Найдите расстояние между противоположными рёбрами.
Прислать комментарий     Решение


Задача 87500

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Высота правильной треугольной пирамиды вдвое больше стороны основания. Найдите угол между боковыми гранями.
Прислать комментарий     Решение


Задача 87504

Темы:   [ Правильная пирамида ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a , высота пирамиды равна 2a . Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прислать комментарий     Решение


Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .