Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Основание прямой призмы PQRP1Q1R1 – треугольник PQR , в котором PQR = 90o , PQ:QR=1:3 . Точка K – середина катета PQ и LM призмы. Ребро AB правильной треугольной пирамиды ABCD ( A – вершина) лежит на прямой PR , вершины C и D – на прямых P1K и QQ1 соответственно. Найдите отношение объёмов призмы и пирамиды, если AB:CD=2:3 .

Вниз   Решение


Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.

  а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

ВверхВниз   Решение


В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а $ \angle$ACB = 30o. Из вершины A к боковой стороне BC проведены биссектриса AE и медиана AD. Найдите площадь треугольника ADE.

ВверхВниз   Решение


Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.

ВверхВниз   Решение


В треугольнике KLM взяты точка A на стороне LM, а точка B – на стороне KM. Отрезки KA и LB пересекаются в точке O,  LA : AM = 3 : 4,  KO : OA = 3 : 2.
Найдите  LO : OB.

ВверхВниз   Решение


Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и  ∠DEF = 90°.
Докажите, что  ∠ADE = ∠EDF.

ВверхВниз   Решение


В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.

ВверхВниз   Решение


Внутри выпуклого многогранника выбрана точка P и несколько прямых  l1, ..., ln,  проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  l1, ..., ln,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

ВверхВниз   Решение


Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела вычисляется по формуле: P=σ ST4 , где σ = 5,7· 10-8   , площадь S поверхности измеряется в квадратных метрах, температура T — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 1014   м2 , а излучаемая ею мощность P не менее 0,57· 1015  Вт. Определите наименьшую возможную температуру этой звезды (в градусах Кельвина).

ВверхВниз   Решение


В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.

ВверхВниз   Решение


Точки P и Q – середины рёбер KL и LM правильной треугольной призмы KLMK1L1M1 . Ребро SB правильной четырёхугольной пирамиды SABCD ( S – вершина) лежит на прямой QK , а вершины A и C – на прямых K1P и LL1 соответственно. Найдите отношение объёмов призмы и пирамиды, если SA=5AB .

ВверхВниз   Решение


В трапеции ABCD с боковыми сторонами  AB = 9  и  CD = 5  биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
  а) В каком отношении прямая LN делит сторону AB, а прямая MK – сторону BC?
  б) Найдите отношение  MN : KL,  если  LM : KN = 3 : 7.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]      



Задача 102429

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD с боковыми сторонами  AB = 9  и  CD = 5  биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
  а) В каком отношении прямая LN делит сторону AB, а прямая MK – сторону BC?
  б) Найдите отношение  MN : KL,  если  LM : KN = 3 : 7.

Прислать комментарий     Решение

Задача 108926

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.

Прислать комментарий     Решение

Задача 111206

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Средняя линия треугольника ]
[ Площадь и ортогональная проекция ]
[ Симметрия относительно плоскости ]
[ Площадь трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.

Прислать комментарий     Решение

Задача 111698

Темы:   [ Перегруппировка площадей ]
[ Три точки, лежащие на одной прямой ]
[ Площади криволинейных фигур ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

Прислать комментарий     Решение

Задача 35489

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 9,10,11

Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .