Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. В каком отношении плоскость, проходящая через точки пересечения медиан треугольников ABC , ABD и BCD , делит отрезок BD ?

Вниз   Решение


Суммы плоских углов при каждой из трёх вершин тетраэдра равны по 180o . Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный).

ВверхВниз   Решение


Дан параллелепипед ABCDA1B1C1D1 . На рёбрах AD , A1D1 и B1C1 взяты точки M , L и K соответственно, причём B1K = A1L , AM = A1L . Известно, что KL = 2 . Найдите длину отрезка, по которому плоскость KLM пересекает параллелограмм ABCD .

ВверхВниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите радиус описанной сферы.

ВверхВниз   Решение


Найдите объём наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной a , если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o .

Вверх   Решение

Задачи

Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 2396]      



Задача 108837

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Даны три вектора , и . Докажите, что вектор перпендикулярен вектору (· ) - (· ) .
Прислать комментарий     Решение


Задача 108841

Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 3
Классы: 8,9

Тетраэдр называется равногранным, если все его грани – равные между собой треугольники. Докажите, что если достроить равногранный тетраэдр до параллелепипеда, проведя через его противоположные рёбра пары параллельных плоскостей, то получится прямоугольный параллелепипед,
Прислать комментарий     Решение


Задача 108843

Темы:   [ Равногранный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что если все грани тетраэдра равны (равногранный тетраэдр), то его развёртка на плоскость грани есть треугольник.
Прислать комментарий     Решение


Задача 108844

Темы:   [ Равногранный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 8,9

Суммы плоских углов при каждой из трёх вершин тетраэдра равны по 180o . Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный).
Прислать комментарий     Решение


Задача 108872

Темы:   [ Объем призмы ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Найдите объём наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной a , если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o .
Прислать комментарий     Решение


Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 2396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .