Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 2393]
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество
середин всех отрезков данной длины, концы которых лежат на этих прямых.
В правильной четырёхугольной пирамиде
PABCD сторона основания
равна
a , боковое ребро равно
a . Одно основание
цилиндра лежит в плоскости
PAB , другое вписано в сечение пирамиды.
Найдите площадь боковой поверхности цилиндра.
|
|
Сложность: 4+ Классы: 10,11
|
Доказать, что если в треугольной пирамиде две высоты пересекаются,
то две другие высоты также пересекаются.
|
|
Сложность: 4+ Классы: 10,11
|
Если через точку
O , расположенную внутри треугольной пирамиды
ABCD , провести отрезки
AA1,BB1,CC1,DD1 , где
A1 лежит на
грани, противоположной вершине
A ,
B1 – на грани,
противоположной вершине
B , и т.д., то имеет место равенство
A1O/A1A+B1O/B1B+C1O/C1C+D1O/D1D=1.
|
|
Сложность: 4+ Классы: 10,11
|
Существуют ли выпуклая
n -угольная (
n 4
)
и треугольная пирамиды такие, что четыре трехгранных угла
n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 2393]