|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и ∠DEF = 90°. Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими. Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности. Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём BM = MN. Могут ли все корни уравнений x² – px + q = 0 и x² – (p + 1)x + q = 0 оказаться целыми числами, если: Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0. Докажите, что при n ≥ 5 сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником. Угол между боковыми гранями правильной треугольной пирамиды равен γ . Найдите плоский угол при вершине пирамиды. |
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 2404]
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 2404] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|