Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Вниз   Решение


Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.

ВверхВниз   Решение


В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
  а) набор цифр 1234; 3269;   б) вторично набор 1975;   в) набор 8197?

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE A= B= D=90o . Найдите угол ADB , если известно, что в данный пятиугольник можно вписать окружность.

ВверхВниз   Решение


Сколько осей симметрии может быть у треугольника?

ВверхВниз   Решение


Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
Докажите, что центр вписанной окружности треугольника ACH лежит на перпендикуляре, опущенном из точки P на AC.

ВверхВниз   Решение


В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.

ВверхВниз   Решение


Точки A' , B' и C' "– середины сторон BC , CA и AB треугольника ABC соответственно, а BH "– его высота. Докажите, что если описанные около треугольников AHC' и CHA' окружности проходят через точку M , отличную от H , то ABM= CBB' .

ВверхВниз   Решение


У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

ВверхВниз   Решение


Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a.

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что  AK = AP.
Найдите отношение  BK : PM.

ВверхВниз   Решение


В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?

ВверхВниз   Решение


Автор: Анджанс А.

Числовая последовательность определяется условиями:    
Докажите, что среди членов этой последовательности бесконечно много полных квадратов.  

ВверхВниз   Решение


Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

ВверхВниз   Решение


Докажите, что бесконечная сумма

  0, 1
+ 0, 01
+ 0, 002
+ 0, 0003
+ 0, 00005
+ 0, 000008
+ 0, 0000013
  ...

сходится к рациональному числу.

ВверхВниз   Решение


В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

ВверхВниз   Решение


Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 57908

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 6
Классы: 9

Пусть движение плоскости переводит фигуру F в фигуру F'. Для каждой пары соответственных точек A и A' рассмотрим середину X отрезка AA'. Докажите, что либо все точки X совпадают, либо все они лежат на одной прямой, либо образуют фигуру, подобную F.
Прислать комментарий     Решение


Задача 98562

Темы:   [ Свойства параллельного переноса ]
[ Симметрия помогает решить задачу ]
[ Композиции движений. Теорема Шаля ]
Сложность: 3+
Классы: 9,10,11

Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

Прислать комментарий     Решение

Задача 78676

Темы:   [ Композиции поворотов ]
[ Процессы и операции ]
[ Круг, сектор, сегмент и проч. ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5-
Классы: 8,9,10

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.
Прислать комментарий     Решение


Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 73714

Темы:   [ Ортоцентр и ортотреугольник ]
[ Итерации ]
[ Неравенства для углов треугольника ]
[ Геометрические интерпретации в алгебре ]
[ Признаки подобия ]
[ Сжимающие отображения и неподвижные точки ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9,10,11

Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .