Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.

Вниз   Решение


Автор: Фольклор

Сравните: sin 3 и sin 3°.

ВверхВниз   Решение


Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

ВверхВниз   Решение


В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что  BM : MN = 1 : 7.  Найдите BC, если  AB = 12.

ВверхВниз   Решение


Даны положительные числа b и c. Докажите неравенство  (bc)2011(b + c)2011(cb)2011 ≥ (b2011c2011)(b2011 + c2011)(c2011b2011).

ВверхВниз   Решение


Сумма трёх положительных углов равна 90o. Может ли сумма косинусов двух из них быть равна косинусу третьего?

ВверхВниз   Решение


При каких значениях c числа  sin α  и  cos α  являются корнями квадратного уравнения  5x² – 3x + c = 0  (α – некоторый угол)?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.

ВверхВниз   Решение


Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее значение выражения  х + у,  если     x ∈ [0, /2],   y ∈ [π, 2π].

ВверхВниз   Решение


Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём     для любого  i = 1, 2, 3.
Докажите, что  

ВверхВниз   Решение


Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается сторон AC, AB и BC в точках K, M и N соответственно. Медиана BB1 треугольника пересекает MN в точке D. Докажите, что точка O лежит на прямой DK.

ВверхВниз   Решение


Дан остроугольный треугольник ABC; B1 и C1 – основания высот, опущенных из вершин B и C соответственно. Точка D – основание перпендикуляра, опущенного из точки B1 на AB; E – точка пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB1. Докажите, что  EC1 || AC.

ВверхВниз   Решение


Биссектриса MN угла KML при основании ML равнобедренного треугольника KML делит сторону KL так, что KN=ML . Найдите биссектрису MN и периметр треугольника KML , если ML=4 .

Вверх   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 401]      



Задача 111064

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9

Биссектриса MN угла KML при основании ML равнобедренного треугольника KML делит сторону KL так, что KN=ML . Найдите биссектрису MN и периметр треугольника KML , если ML=4 .
Прислать комментарий     Решение


Задача 64980

Темы:   [ Общая касательная к двум окружностям ]
[ Радикальная ось ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

Прислать комментарий     Решение

Задача 111715

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Задача 108133

Темы:   [ Касающиеся окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Общие четырехугольники ]
Сложность: 5-
Классы: 8,9

ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .
Прислать комментарий     Решение


Задача 52923

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9,10

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.

Прислать комментарий     Решение


Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .