ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?
Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если CD=6
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если BE=26 , DE=9 Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз).
Могли ли оказаться отмечены Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1. Пусть P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17. Найдите При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение. а) Докажите, что среди всех n-угольников, описанных около данной
окружности, наименьшую площадь имеет правильный n-угольник.
а) Докажите, что среди всех n-угольников, вписанных в данную
окружность, наибольшую площадь имеет правильный n-угольник.
Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды. При каких значениях n все коэффициенты в разложении бинома Ньютона (a + b)n нечётны? В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 501]
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Семиугольник, три угла которого равны по 120o , вписан в окружность. Могут ли все его стороны быть различными по длине?
В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб.
Шестиугольник ABCDEF вписан в окружность. Оказалось, что AB=BD , CE=EF . Диагонали AC и BE пересекаются в точке X , диагонали BE и DF — в точке Y , диагонали BF и AE — в точке Z . Докажите, что треугольник XYZ — равнобедренный.
Окружность, проходящая через вершины A и C и
ортоцентр треугольника ABC , пересекает стороны
AB и BC в точках X и Y . На стороне AC
выбраны точки Z и T так, что ZX=ZY и ZA=TC .
Докажите, что BT
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке