ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника ABC выбрана произвольная точка X . Лучи AX , BX и CX пересекают описанную около треугольника ABC окружность в точках A1 , B1 и C1 соответственно. Точка A2 симметрична точке A1 относительно середины стороны BC . Аналогично определяются точки B2 и C2 . Докажите, что найдётся такая фиксированная точка Y , не зависящая от выбора X , что точки Y , A2 , B2 и C2 лежат на одной окружности. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 239]
Какую линию описывает середина отрезка между двумя пешеходами, равномерно идущими по прямым дорогам?
На сторонах треугольника ABC во внешнюю сторону построены подобные между собой треугольники ADB, BEC и CFA ( = = = k; ADB = BEC = CFA = ). Докажите, что: 1) середины отрезков AC, DC, BC и EF — вершины параллелограмма; 2) у этого параллелограмма два угла равны , а отношение сторон равно k.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 239] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|