Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r.

Вниз   Решение


Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.

ВверхВниз   Решение


Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка F – середина ребра SD , точка E принадлежит апофеме ST грани BSC , причём TE=3ES . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=3 , AB=1 .

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки пространства, не лежащие в одной плоскости. Докажите, что отрезок, соединяющий середины AB и CD , пересекается с отрезком, соединяющим середины AD и BC . При этом каждый из указанных отрезков делится точкой пересечения пополам.

ВверхВниз   Решение


Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , касается стороны BC и пересекает сторону AC в точке M такой, что AM:MC=4:1 . Найдите длину стороны AB .

ВверхВниз   Решение


В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

ВверхВниз   Решение


В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

ВверхВниз   Решение


Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .

ВверхВниз   Решение


Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  AE : EC,  если  AB = 5  и  BC = 9.
  б) Сравните площади треугольников ABC и ABF.

ВверхВниз   Решение


На стороне BC остроугольного треугольника ABC  (AB ≠ AC)  как на диаметре построена полуокружность, пересекающая высоту AD в точке M,  AD = a,  MD = b,  H – точка пересечения высот треугольника ABC. Найдите AH.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

ВверхВниз   Решение


С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .

ВверхВниз   Решение


Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .

ВверхВниз   Решение


В шар радиуса 4 вписана правильная шестиугольная пирамида с высотой 6, а в неё вписан второй шар. Найдите радиус второго шара.

ВверхВниз   Решение


Взаимно перпендикулярные диаметр KM и хорда AB некоторой окружности пересекаются в точке N,  KN ≠ NM.  На продолжении отрезка AB за точку A взята точка L,  LN = a,  AN = b.  Найдите расстояние от точки N до точки пересечения высот треугольника KLM.

ВверхВниз   Решение


B трапеции ABCD  AB = BC = CDCH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.

ВверхВниз   Решение


Даны правильная четырёхугольная пирамида SABCD и конус, центр основания которого лежит на прямой SO ( SO – высота пирамиды). Точка E лежит на ребре SD , причём SE=2ED , точка F – середина ребра AD . Треугольник, являющийся одним из осевых сечений конуса, расположен так, что две его вершины лежат на прямой CD , а третья – на прямой EF . Найдите объём конуса, если AB=1 , SO= .

ВверхВниз   Решение


Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

ВверхВниз   Решение


В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Вверх   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 540]      



Задача 110509

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Расстояние от центра O шара радиуса 9, описанного около правильной четырёхугольной пирамиды, до бокового ребра в раз больше расстояния от точки O до боковой грани пирамиды. Найдите: 1) высоту пирамиды; 2) расстояние от точки O до боковой грани пирамиды; 3) радиус вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 65416

Темы:   [ Наглядная геометрия ]
[ Четырехугольная пирамида ]
[ Правильная пирамида ]
Сложность: 3+
Классы: 8,9,10,11

На землю положили квадратную раму, в центре квадрата установили вертикальный шест. Когда на эту конструкцию сверху натянули ткань, получилась маленькая палатка. Если положить рядом вплотную две таких же рамы, в центре каждой поставить вертикальный шест той же длины и натянуть сверху ткань, получится большая палатка. На маленькую палатку ушло 4 квадратных метра ткани. А сколько ткани потребуется для большой палатки?

Прислать комментарий     Решение

Задача 116518

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неопределено ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 116519

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 87135

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде расположен шар радиуса 1. В точке, делящей пополам высоту пирамиды, он касается внешним образом полушара. Полушар опирается на круг, вписанный в основание пирамиды, шар касается боковых граней пирамиды. Найдите площадь боковой поверхности пирамиды и угол между боковыми гранями пирамиды.
Прислать комментарий     Решение


Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .