|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и ∠DEF = 90°. Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими. Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности. Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём BM = MN. Могут ли все корни уравнений x² – px + q = 0 и x² – (p + 1)x + q = 0 оказаться целыми числами, если: |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 979]
Представьте числовое выражение 2·2009² + 2·2010² в виде суммы квадратов двух натуральных чисел. .
Барон Мюнхгаузен попросил задумать непостоянный многочлен P(x) с целыми неотрицательными коэффициентами и сообщить ему только значения P(2) и P(P(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?
Найдите значение выражения
Могут ли все корни уравнений x² – px + q = 0 и x² – (p + 1)x + q = 0 оказаться целыми числами, если:
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 979] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|