Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи




Четырёхугольник ABCD вписан в окружность с диаметром AD ; O  — точка пересечения его диагоналей AC и BD является центром другой окружности, касающейся стороны BC . Из вершин B и С проведены касательные ко второй окружности, пересекающиеся в точке T . Докажите, что точка T лежит на отрезке AD .

Вниз   Решение


Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

ВверхВниз   Решение


В треугольнике АВС : АС = . Докажите, что центры вписанной и описанной окружностей треугольника АВС , середины сторон АВ и ВС и вершина В лежат на одной окружности.

ВверхВниз   Решение


На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону  AD в точке  E . Точка P  — основание перпендикуляра, опущенного из точки  M на прямую  CE . Найдите угол  APB .

ВверхВниз   Решение


Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

ВверхВниз   Решение


Площадь прямоугольного треугольника ABC ( $ \angle$C = 90o) равна 6, радиус описанной около него окружности равен $ {\frac{5}{2}}$. Найдите радиус окружности, вписанной в данный треугольник.

ВверхВниз   Решение


Хорды AC и BD окружности пересекаются в точке P . Перпендикуляры к AC и BD , восставленные в точках C и D соответственно, пересекаются в точке Q . Докажите, что прямые AB и PQ перпендикулярны.

ВверхВниз   Решение


Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 970]      



Задача 116414

Темы:   [ Целочисленные и целозначные многочлены ]
[ Деление с остатком ]
Сложность: 3+
Классы: 10,11

Барон Мюнхгаузен попросил задумать непостоянный многочлен P(x) с целыми неотрицательными коэффициентами и сообщить ему только значения P(2) и P(P(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?

Прислать комментарий     Решение

Задача 116618

Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите значение выражения   .

Прислать комментарий     Решение

Задача 116850

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Могут ли все корни уравнений  x² – px + q = 0  и  x² – (p + 1)x + q = 0  оказаться целыми числами, если:
  а)  q > 0;
  б)  q < 0?

Прислать комментарий     Решение

Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 116976

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 5,6,7

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число x, при котором значение выражения  x² – 9x + 13  отрицательно. А если ввести число x, при котором отрицательно значение выражения  x² + x – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 970]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .