ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 965]      



Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 116976

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 5,6,7

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число x, при котором значение выражения  x² – 9x + 13  отрицательно. А если ввести число x, при котором отрицательно значение выражения  x² + x – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

Прислать комментарий     Решение

Задача 66371

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

При каких целых значениях m число Р = 1 + 2m + 3m2 + 4m3 + 5m4 + 4m5 + 3m6 + 2m7 + m8 является квадратом целого числа?
Прислать комментарий     Решение


Задача 66420

Тема:   [ Формулы сокращенного умножения ]
Сложность: 3+
Классы: 7,8

Можно ли представить число в виде суммы квадратов двух натуральных чисел?
Прислать комментарий     Решение


Задача 66426

Темы:   [ Формулы сокращенного умножения ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найдите наименьшее значение выражения а4а2 – 2а.
Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .