Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Постройте на координатной плоскости множество точек, удовлетворяющих равенству  max {x, x²} + min {y, y²} = 1.

Вниз   Решение


Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

ВверхВниз   Решение


При изучении иностранного языка класс делится на две группы. Ниже даны списки групп и полугодовые оценки учащихся. Может ли учительница английского языка перевести одного ученика из первой группы во вторую так, чтобы средний балл учащихся в обеих группах вырос?

ВверхВниз   Решение


Изобразите на фазовой плоскости Opq множество точек  (p, q),  для которых уравнение  x³ + px + q = 0  имеет три различных корня, принадлежащих интервалу  (–2, 4).

ВверхВниз   Решение


Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону?

ВверхВниз   Решение


Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена  x3 – 6x2 + ax + a  удовлетворяют равенству
(x1 – 3)3 + (x2 – 3)3 + (x3 – 3)3 = 0.

ВверхВниз   Решение


Изобразите на фазовой плоскости Opq множества точек  (p, q),  для которых все корни уравнения  x³ + px + q = 0  не превосходят по модулю 1.

ВверхВниз   Решение


На доске написано уравнение  x³ + *x² + *x + * = 0.  Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014?

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.

ВверхВниз   Решение


Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

ВверхВниз   Решение


На координатной плоскости изображен график функции  y = ax² + bx + c  (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции  y = cx² + 2bx + a.

ВверхВниз   Решение


В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.

ВверхВниз   Решение


Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Обозначим его через  ν(a, b).  Докажите, что величина  ν(a, b)  связана с  μ(a, b)  (см. задачу 61322) равенством  ν(a, b)·μ(1/a, 1/b) = 1.

ВверхВниз   Решение


Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 158]      



Задача 116857

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 66774

Темы:   [ Вписанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Центральная симметрия (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.
Прислать комментарий     Решение


Задача 32105

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Окружности (построения) ]
[ Свойства симметрии и центра симметрии ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 7,8,9

Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.

Прислать комментарий     Решение


Задача 64873

Темы:   [ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω21, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.

Прислать комментарий     Решение

Задача 115868

Темы:   [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Отношение, в котором биссектриса делит сторону ]
[ Подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .