ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 35413

Тема:   [ Пересекающиеся окружности ]
Сложность: 3-
Классы: 8,9,10

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

Прислать комментарий     Решение

Задача 53910

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

Прислать комментарий     Решение

Задача 52878

Темы:   [ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами.

Прислать комментарий     Решение

Задача 53672

Темы:   [ Пересекающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.
Прислать комментарий     Решение


Задача 65995

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9,10

Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .