Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 61]
|
|
Сложность: 3+ Классы: 10,11
|
Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита
АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число
и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.
|
|
Сложность: 4 Классы: 8,9,10
|
В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и
найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение N! способами.
Даны
N ≥ 3 точек, занумерованных числами 1, 2, ...,
N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем
однотонной, если нет двух таких точек
A и
B, что от
A до
B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.
|
|
Сложность: 5+ Классы: 8,9,10
|
Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.
Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
а) считаются различными?
б) считаются тождественными?
Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 61]