Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

Вниз   Решение


Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых больше 1. Докажите это.

Расстояние между двумя кругами — это расстояние между их ближайшими точками.

ВверхВниз   Решение


Общие внешние касательные к парам окружностей S1 и S2, S2 и S3, S3 и S1 пересекаются в точках A, B и C соответственно. Докажите, что точки A, B и C лежат на одной прямой.

ВверхВниз   Решение


Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

ВверхВниз   Решение


Постройте четырехугольник ABCD, в который можно вписать окружность, зная длины двух соседних сторон AB и AD и углы при вершинах B и D.

ВверхВниз   Решение


С помощью циркуля и линейки постройте квадрат по четырём точкам, лежащим на четырёх его сторонах.

ВверхВниз   Решение


С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

ВверхВниз   Решение


Постройте четырехугольник по углам и диагоналям.

ВверхВниз   Решение


Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.

ВверхВниз   Решение


n отрезков A1 B1 , A2 B2 , ... , An Bn (рис. 5) расположены на плоскости так, что каждый из них начинается на одной из двух данных прямых, оканчивается на другой прямой, и проходит через точку G (не лежащую на данных прямых) — центр тяжести единичных масс, помещенных в точках A1 , A2 , ... , An . Докажите, что

++...+=n.

ВверхВниз   Решение


Постройте вписанный четырехугольник по четырем сторонам (Брахмагупта).

ВверхВниз   Решение


В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?

ВверхВниз   Решение


Пусть ABCD — выпуклый четырёхугольник. Докажите, что если периметр треугольника ABD меньше периметра треугольника ACD, то AB < AC.

ВверхВниз   Решение


В треугольнике ABC известно, что $ \angle$BAC = 75o, AB = 1, AC = $ \sqrt{6}$. На стороне BC выбрана точка M, причём $ \angle$BAM = 30o. Прямая AM пересекает окружность, описанную около треугольника ABC, в точке N, отличной от A. Найдите AN.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 67129

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Теорема Птолемея ]
Сложность: 5
Классы: 8,9,10,11

Выпуклый четырехугольник ABCD таков, что B=D. Докажите, что середина диагонали BD лежит на общей внутренней касательной к окружностям, вписанным в треугольники ABC и ACD.
Прислать комментарий     Решение


Задача 57047

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема Птолемея ]
[ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 5+
Классы: 9,10,11

Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.
Прислать комментарий     Решение


Задача 110757

Темы:   [ Концентрические окружности ]
[ Теорема Птолемея ]
[ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 8+
Классы: 10,11

Даны две концентрические окружности. Каждая из окружностей b1 и b2 касается внешним образом одной окружности и внутренним – другой, а каждая из окружностей c1 и c2 касается внутренним образом обеих окружностей. Докажите, что 8 точек, в которых окружности b1 , b2 пересекают c1 , c2 , лежат на двух окружностях, отличных от b1 , b2 , c1 , c2 . (Некоторые из этих окружностей могут выродиться в прямые.)
Прислать комментарий     Решение


Задача 53631

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если катеты треугольника равны a и b.

Прислать комментарий     Решение

Задача 52826

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
[ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что $ \angle$BAC = 75o, AB = 1, AC = $ \sqrt{6}$. На стороне BC выбрана точка M, причём $ \angle$BAM = 30o. Прямая AM пересекает окружность, описанную около треугольника ABC, в точке N, отличной от A. Найдите AN.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .