ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).

Вниз   Решение


Точки a1, a2 и a3 расположены на единичной окружности  zz = 1.
Докажите, что точка  h = a1 + a2 + a3  является ортоцентром треугольника с вершинами в точках a1, a2 и a3.

ВверхВниз   Решение


Карта Квадрландии представляет собой квадрат 6×6 клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств?

ВверхВниз   Решение


На отрезке длиной 1 расположены попарно не пересекающиеся отрезки, сумма длин которых равна p. Обозначим эту систему отрезков A. Пусть B — дополнительная система отрезков (отрезки систем A и B не имеют общих внутренних точек и полностью покрывают данный отрезок). Докажите, что существует параллельный перенос T, для которого пересечение B и T(A) состоит из отрезков, сумма длин которых не меньше p(1 - p)/2.

ВверхВниз   Решение


На доске написаны числа 0, 1, 0, 0. За один шаг разрешается прибавлять единицу к любым двум из них.
Можно ли, повторяя эту операцию, добиться, чтобы все числа стали равными?

ВверхВниз   Решение


Представьте числовое выражение  2·2009² + 2·2010²  в виде суммы квадратов двух натуральных чисел.

.

ВверхВниз   Решение


В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

ВверхВниз   Решение


В треугольнике ABC угол B равен 45o, угол C равен 30o. На медианах BM и CN как на диаметрах построены окружности, пересекающиеся в точках P и Q. Хорда PQ пересекает сторону BC в точке D. Найдите отношение отрезков BD и DC.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 125]      



Задача 53003

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC угол B равен 45o, угол C равен 30o. На медианах BM и CN как на диаметрах построены окружности, пересекающиеся в точках P и Q. Хорда PQ пересекает сторону BC в точке D. Найдите отношение отрезков BD и DC.

Прислать комментарий     Решение


Задача 53005

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4+
Классы: 8,9

В остроугольном треугольнике ABC угол C равен 60o. На медианах BM и CN как на диаметрах построены окружности, пересекающиеся в точках P и Q. Хорда PQ пересекает сторону BC в точке D, причём BD : DC = $ \sqrt{3}$. Найдите угол B.

Прислать комментарий     Решение


Задача 53006

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4+
Классы: 8,9

В трапеции ABCD основание AD вдвое больше основания BC, угол A равен 30o, угол D равен 60o. На диагоналях трапеции как на диаметрах построены окружности, пересекающиеся в точках K и L. Найдите отношение площадей четырёхугольников, на которые хорда KL разбивает трапецию ABCD.

Прислать комментарий     Решение


Задача 64980

Темы:   [ Общая касательная к двум окружностям ]
[ Радикальная ось ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

Прислать комментарий     Решение

Задача 66275

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 9,10,11

Автор: Новиков С.

Дан неравнобедренный треугольник ABC, AA1 – его биссектриса, A2 – точка касания вписанной окружности со стороной BC. Аналогично определяются точки B1, B2, C1, C2. Пусть O – центр описанной окружности треугольника, I – центр вписанной окружности. Докажите, что радикальный центр описанных окружностей треугольников AA1A2, BB1B2, CC1C2, лежит на прямой OI.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .