ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки касания вписанной в треугольник окружности соединены отрезками и в полученном треугольнике проведены высоты. Докажите, что прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника.

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1275]      



Задача 55529

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Внутри остроугольного треугольника ABC дана точка P, причём $ \angle$APB = $ \angle$ACB + 60o, $ \angle$BPC = $ \angle$BAC + 60o, $ \angle$CPA = $ \angle$CBA + 60o. Докажите, что точки пересечения продолжений отрезков AP, BP и CP (за точку P) с описанной окружностью треугольника ABC лежат в вершинах равностороннего треугольника.

Прислать комментарий     Решение


Задача 52485

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.

Прислать комментарий     Решение


Задача 53031

Темы:   [ Угол между касательной и хордой ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9

Точки касания вписанной в треугольник окружности соединены отрезками и в полученном треугольнике проведены высоты. Докажите, что прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника.

Прислать комментарий     Решение


Задача 53214

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В прямоугольном треугольнике ABC угол C — прямой, а сторона CA = 4 . На катете BC взята точка D , причём CD = 1 . Окружность радиуса проходит через точки C и D и касается в точке C окружности, описанной около треугольника ABC . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Задача 53569

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В окружности с центром O проведён диаметр; A и B — точки окружности, расположенные по одну сторону от этого диаметра. На диаметре взята такая точка M, что AM и BM образуют равные углы с диаметром. Докажите, что $ \angle$AOB = $ \angle$AMB.

Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .