ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Брат и сестра делят треугольный торт так: он указывает точку на торте, а она проводит через эту точку прямолинейный разрез и выбирает себе кусок. Каждый хочет получить кусок как можно больше. Где брат должен поставить точку? Какую часть торта получит в этом случае каждый из них? За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться? Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см? На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC. Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM. На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL. Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см. Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'. P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1. На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход. Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно? б) Достаточно ли требовать, чтобы можно было построить всякие 4 из в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно. В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°. В треугольнике ABC провели медианы BK и CN, пересекающиеся в точке M. Какое наибольшее количество сторон четырёхугольника ANMK может иметь длину 1?
Около треугольника ABC описана окружность с центром в точке
O. Касательная к окружности в точке C пересекается с прямой,
делящей пополам угол B треугольника, в точке K, причём угол BKC
равен половине угла C треугольника. Сторона AB на
|
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]
Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что ∠QPH = 90°.
Около треугольника ABC описана окружность с центром в точке
O. Касательная к окружности в точке C пересекается с прямой,
делящей пополам угол B треугольника, в точке K, причём угол BKC
равен половине разности утроенного угла A и угла C треугольника.
Сумма сторон AC и AB равна
2 +
Около треугольника ABC описана окружность с центром в точке
O. Касательная к окружности в точке C пересекается с прямой,
делящей пополам угол B треугольника, в точке K, причём угол BKC
равен половине угла C треугольника. Сторона AB на
Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке B пересекается с прямой AC в точке K, причём угол AKB равен разности учетверённого угла A и угла B треугольника. Сторона AB в два раза длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке