ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали выпуклого четырёхугольника ABCD перпендикулярны и
пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r. Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD. На стороне BC треугольника ABC взята точка D. Окружность S1 касается
отрезков BE и EA и описанной окружности, окружность S2 касается отрезков
CE и EA и описанной окружности. Пусть I, I1, I2 и r, r1, r2
-- центры и радиусы вписанной окружности и окружностей S1, S2;
Докажите, что длина биссектрисы AD треугольника ABC
равна
Докажите, что площадь правильного восьмиугольника
равна произведению длин наибольшей и наименьшей его диагоналей.
Внутри треугольника ABC взята точка O; прямые AO, BO
и CO пересекают его стороны в точках A1, B1 и C1. Докажите, что:
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
Докажите, что сумма расстояний от точки, взятой
произвольно внутри правильного треугольника, до его сторон
постоянна (и равна высоте треугольника).
Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1398]
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника.
Площадь треугольника ABC равна 20. Угол между сторонами AB и AC острый. Найдите сторону BC, если AB = 8, AC = 13.
Известно, что середины сторон двух выпуклых четырехугольников совпадают. Докажите, что их площади равны.
Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1398]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке