ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что  ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



Задача 54195

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Прямые, касающиеся окружности с центром O в точках A и B, пересекаются в точке M. Найдите хорду AB, если отрезок MO делится ею на отрезки, равные 2 и 18.

Прислать комментарий     Решение

Задача 52892

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Окружность с центром в вершине прямого угла прямоугольного треугольника радиуса, равного меньшему катету, делит гипотенузу на отрезки в 98 и 527 (начиная от меньшего катета). Найдите катеты.

Прислать комментарий     Решение


Задача 52907

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.

Прислать комментарий     Решение


Задача 53867

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что  ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

Прислать комментарий     Решение

Задача 54252

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC основание AC равно 32, а боковая сторона равна 20. Из вершины B проведён перпендикуляр к боковой стороне до пересечения с основанием. На какие части он делит основание?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .