Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Решите уравнение:

$\displaystyle \sqrt{\dfrac{1+2x\sqrt{1-x^2}}{2}}$ + 2x2 = 1.



Вниз   Решение


Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

ВверхВниз   Решение


а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

ВверхВниз   Решение


Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

ВверхВниз   Решение


Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

ВверхВниз   Решение


Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

ВверхВниз   Решение


Автор: Фольклор

Найти количество нечётных чисел в n-й строке треугольника Паскаля.

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.

ВверхВниз   Решение


При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

ВверхВниз   Решение


В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции.

ВверхВниз   Решение


O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.

ВверхВниз   Решение


В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

ВверхВниз   Решение


Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

ВверхВниз   Решение


Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.

ВверхВниз   Решение


В треугольнике ABC стороны AC и BC не равны. Докажите, что биссектриса угла C делит пополам угол между медианой и высотой, проведёнными из вершины C, тогда и только тогда, когда $ \angle$C = 90o.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 292]      



Задача 53868

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Прислать комментарий     Решение

Задача 54054

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Одна вершина правильного треугольника лежит на окружности, а две другие делят некоторую хорду на три равные части.
Под каким углом видна хорда из центра окружности?

Прислать комментарий     Решение

Задача 54056

Темы:   [ Правильный (равносторонний) треугольник ]
[ Касающиеся окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Одна окружность описана около равностороннего треугольника ABC, а вторая касается прямых AB и AC и первой окружности. Найдите отношение радиусов окружностей.

Прислать комментарий     Решение

Задача 54453

Темы:   [ Правильный (равносторонний) треугольник ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла $ {\frac{45}{98}}$ площади треугольника ABC?

Прислать комментарий     Решение


Задача 64398

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10

Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .