Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 460]
|
|
Сложность: 3- Классы: 8,9,10
|
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.
Площадь ромба ABCD равна 2. В треугольник ABD вписана
окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Найдите угол BAD, если известно, что площадь треугольника KLB равна a.
Точки K и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AK = BK и AN = 2NC.
В каком отношении отрезок KN делит медиану AM треугольника ABC?
Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади
S, равна 3
S/4.
На сторонах AD и CD параллелограмма ABCD
взяты точки M и N так, что MN || AC. Докажите, что SABM = SCBN.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 460]