Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.

Вниз   Решение


Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.

ВверхВниз   Решение


Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

ВверхВниз   Решение


Пусть A, B, C, D - последовательные вершины квадрата, а точка O расположена внутри квадрата. Известно, что OC = OD = $ \sqrt{10}$ и OB = $ \sqrt{26}$. Найдите площадь квадрата.

ВверхВниз   Решение


В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

ВверхВниз   Решение


Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = CD,  M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.

ВверхВниз   Решение


Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.

ВверхВниз   Решение


В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что  BK = MN.

ВверхВниз   Решение


В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.

ВверхВниз   Решение


Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

ВверхВниз   Решение


Разрежьте произвольный тупоугольный треугольник на 7 остроугольных.

ВверхВниз   Решение


На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?

ВверхВниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

ВверхВниз   Решение


Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .

ВверхВниз   Решение


В ромбе ABCD точки M и N — середины сторон BC и CD соответственно. Найдите угол MAN, если $ \angle$BAD = 60o.

ВверхВниз   Решение


На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.

ВверхВниз   Решение


Окружности S1, S2,..., Sn касаются двух окружностей R1 и R2 и, кроме того, S1 касается S2 в точке A1, S2 касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки A1, A2,..., An - 1 лежат на одной окружности.

ВверхВниз   Решение


Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

ВверхВниз   Решение


Доказать, что найдётся число вида
  а) 1989...19890...0 (несколько раз повторено число 1989, а затем стоит несколько нулей), делящееся на 1988;
  б) 1988...1988, делящееся на 1989.

ВверхВниз   Решение


Бесконечная последовательность чисел xn определяется условиями:  xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
  б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?

ВверхВниз   Решение


Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.

ВверхВниз   Решение


а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.

ВверхВниз   Решение


Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно k.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 462]      



Задача 54564

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Построения с помощью вычислений ]
Сложность: 4
Классы: 8,9

Постройте точку M внутри данного треугольника так, что S$\scriptstyle \Delta$ABM : S$\scriptstyle \Delta$BCM : S$\scriptstyle \Delta$ACM = 1 : 2 : 3.

Прислать комментарий     Решение


Задача 54733

Темы:   [ Отношения площадей ]
[ Площадь четырехугольника ]
Сложность: 4
Классы: 8,9

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно k.

Прислать комментарий     Решение


Задача 55134

Темы:   [ Отношение площадей подобных треугольников ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.

Прислать комментарий     Решение


Задача 52930

Темы:   [ Отношение площадей подобных треугольников ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD диагональ AC перпендикулярна стороне AB. Некоторая окружность касается стороны BC параллелограмма ABCD в точке P и касается прямой, проходящей через вершины A и B этого же параллелограмма, в точке A. Через точку P проведён перпендикуляр PQ к стороне AB (точка Q — основание этого перпендикуляра). Найдите угол ABC, если известно, что площадь параллалограмма ABCD равна $ {\frac{1}{2}}$, а площадь пятиугольника QPCDA равна S.

Прислать комментарий     Решение


Задача 52931

Темы:   [ Отношение площадей подобных треугольников ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Площадь прямоугольника ABCD равна 1. Некоторая окружность касается диагонали AC прямоугольника ABCD в точке E и касается прямой, проходящей через вершины C и D этого же прямоугольника, в точке D. Через точку E проведён перпендикуляр EF к стороне CD (точка F — основание этого перпендикуляра). Найдите угол BAC, если известно, что площадь трапеции AEFD равна a.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .