ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть точка z движется по единичной окружности против часовой стрелки. Опишите движение следующих точек
На сторонах выпуклого четырёхугольника ABCD, площадь
которого равна 1, взяты точки: K — на AB, L — на BC,
M — на CD, N — на AD. При этом
Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно. Муха двигается из начала координат только вправо или вверх по линиям
целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы. а) Дано шестизначное число abcdef, причём abc + def делится на 37. Докажите, что и само число делится на 37.
Правильный треугольник ABC со стороной a и два ромба ACMN и
ABFE расположены так, что точки M и B лежат по разные стороны от
прямой AC, а точки F и C — по разные стороны от прямой AB.
Найдите расстояние между центрами ромбов, если
Точка O — центр окружности, вписанной в равнобедренный
треугольник ABC (AB = BC). Прямая AO пересекает отрезок BC в
точке M. Найдите углы и площадь треугольника ABC, если AO = 3,
OM =
Сформулируйте и докажите признаки делимости на 2n и 5n.
В треугольник со сторонами AB = 4, BC = 2, AC = 3 вписана окружность. Найдите площадь треугольника AMN, где M, N — точки касания этой окружности со сторонами AB и AC соответственно.
На плоскости заданы две пересекающиеся прямые, и на них отмечено по одной точке (D и E). Постройте треугольник ABC, у которого биссектрисы CD и AE лежат на данных прямых, а основания этих биссектрис— данные точки D и E.
Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.
Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке. На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно, причём BD + DE = BC и BE + ED = AB. Известно, что четырёхугольник ADEC – вписанный. Докажите, что треугольник ABC – равнобедренный.
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 80]
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Прямоугольник ABCD (AB = a, BC = b) сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что S < ¾ ab.
В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.
Дан выпуклый четырехугольник $ABCD$ площади $S$. Внутри каждой его стороны отмечено по точке и эти точки последовательно соединены отрезками, так что $ABCD$ разбивается на меньший четырехугольник и $4$ треугольника. Докажите, что хотя бы у одного из этих треугольников площадь не превосходит $\frac{S}{8}$.
Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 80]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке