Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Вниз   Решение


Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

ВверхВниз   Решение


а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
б) Постройте с помощью одного циркуля отрезок, который в n раз длиннее данного отрезка.

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

ВверхВниз   Решение


Разделите окружность с данным центром на шесть равных частей, пользуясь только циркулем.

ВверхВниз   Решение


Пользуясь только циркулем, удвойте данный орезок, то есть постройте для данных точек A и B такую точку C, чтобы точки A, B, C лежали на одной прямой (B между A и C) и  AC = 2AB.

ВверхВниз   Решение


Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой, проходящей через данные точки B и C.

ВверхВниз   Решение


Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

ВверхВниз   Решение


Постройте треугольник по a, ha и b/c.

ВверхВниз   Решение


В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

ВверхВниз   Решение


Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

ВверхВниз   Решение


Докажите, что при  x ∈ (0, π/2)  выполняется неравенство  

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм ABCD по отрезкам AB, AC и AD.

ВверхВниз   Решение


Докажите, что степень точки P относительно окружности S равна d2 - R2, где R — радиус Sd — расстояние от точки P до центра S.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?

ВверхВниз   Решение


Центр вписанной окружности треугольника ABC симметричен центру описанной окружности относительно стороны AB. Найдите углы треугольника ABC.

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по стороне и диагоналям.

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



Задача 56653

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.
Прислать комментарий     Решение


Задача 56654

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.
Прислать комментарий     Решение


Задача 56656

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (a + b - c)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
Прислать комментарий     Решение


Задача 56707

Тема:   [ Окружности (прочее) ]
Сложность: 2
Классы: 8,9

Две окружности имеют радиусы R1 и R2, а расстояние между их центрами равно d. Докажите, что эти окружности ортогональны тогда и только тогда, когда  d2 = R12 + R22.
Прислать комментарий     Решение


Задача 55686

Темы:   [ Окружности (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 3-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .