ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах выпуклого n-угольника внешним образом построены правильные
n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и
только тогда, когда исходный n-угольник аффинно правильный.
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
Найдите радиус окружности, описанной около треугольника со сторонами 5 и 8 и углом между ними 60o.
Докажите, что у равнобедренного треугольника: В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке. Дан вписанный $n$-угольник. Оказалось что середины всех его сторон лежат на одной окружности. Стороны $n$-угольника отсекают от этой окружности $n$ дуг, лежащих вне $n$-угольника. Докажите, что эти дуги можно покрасить в красный и синий цвет так, чтобы сумма длин красных дуг равнялась сумме длин синих. Докажите, что предельная точка пучка является общей точкой окружностей
ортогонального пучка, и наоборот.
На сторонах аффинно правильного многоугольника
A1A2...An с центром O
внешним образом построены квадраты
Aj + 1AjBjCj + 1
(j = 1,..., n).
Докажите, что отрезки BjCj и OAj перпендикулярны, а их отношение равно
2 Докажите, что любая окружность пучка либо пересекает радикальную ось в двух
фиксированных точках (эллиптический пучок),
либо касается радикальной оси в фиксированной точке (параболический
пучок), либо не пересекает радикальную ось
(гиперболический пучок).
Площадь треугольника ABC равна S,
С помощью циркуля и линейки постройте треугольник по углу, биссектрисе, проведённой из вершины этого угла, и радиусу вписанной окружности.
Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия: – Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$. – Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку. Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ . Основание наклонной призмы – равносторонний треугольник со стороной a . Одно из боковых рёбер равно b и образует с прилежащими сторонами основания углы 45o . Найдите боковую поверхность призмы. Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа а) б) Даны окружность S и точка M вне ее. Через точку M
проводятся всевозможные окружности S1, пересекающие окружность S; X — точка пересечения касательной в точке M к окружности S1
с продолжением общей хорды окружностей S и S1. Найдите ГМТ X.
В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке. Точки A, B и C лежат на одной прямой, причём B находится между A и C. Выпуклый многоугольник
A1...An лежит внутри окружности S1, а выпуклый
многоугольник
B1...Bm — внутри S2. Докажите, что если эти
многоугольники пересекаются, то одна из точек A1, ..., An лежит внутри
S2 или одна из точек B1, ..., Bm лежит внутри S1.
Докажите, что семейство всех окружностей, ортогональным окружностям данного
пучка, образует пучок.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]
Докажите, что гиперболический пучок содержит две предельные точки,
параболический — одну, а эллиптический — ни одной.
Докажите, что если окружность ортогональна двум окружностям пучка, то она
ортогональна и всем остальным окружностям пучка.
Докажите, что семейство всех окружностей, ортогональным окружностям данного
пучка, образует пучок.
Докажите, что предельная точка пучка является общей точкой окружностей
ортогонального пучка, и наоборот.
В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке