ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.

Вниз   Решение


Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?

ВверхВниз   Решение


Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).

ВверхВниз   Решение


Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.

ВверхВниз   Решение


Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные.

ВверхВниз   Решение


Найдите остаток от деления 2100 на 3.

ВверхВниз   Решение


Автор: Saghafian M.

Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?

ВверхВниз   Решение


На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?

ВверхВниз   Решение


Найдите уравнения эллипсов Штейнера в барицентрических координатах.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.

ВверхВниз   Решение


В треугольнике ABC угол C равен 90o , AC = 8 , sin A = . Найдите BC .

ВверхВниз   Решение


Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n.
  а) Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?
  б) А если при этом дополнительно требуется, чтобы  C(a + b) > 1000?

ВверхВниз   Решение


Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



Задача 56887

Темы:   [ Вписанные и описанные окружности ]
[ Периметр треугольника ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол равен половине центрального ]
[ Средняя линия треугольника ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 8,9

Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116901

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9

Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что  ∠QPH = 90°.

Прислать комментарий     Решение

Задача 53127

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине разности утроенного угла A и угла C треугольника. Сумма сторон AC и AB равна 2 + $ \sqrt{3}$, а сумма расстояний от точки O до сторон AC и AB равна 2. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 53128

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине угла C треугольника. Сторона AB на $ \sqrt{3}$ длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 53129

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке B пересекается с прямой AC в точке K, причём угол AKB равен разности учетверённого угла A и угла B треугольника. Сторона AB в два раза длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .