|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка. Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть? Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB). Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника. Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные. Найдите остаток от деления 2100 на 3. Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам? На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке? Найдите уравнения эллипсов Штейнера в барицентрических координатах. В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то В треугольнике ABC угол C равен 90o , AC = 8 , sin A = Пусть C(n) – количество различных простых делителей числа n. Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что: |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]
Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что ∠QPH = 90°.
Около треугольника ABC описана окружность с центром в точке
O. Касательная к окружности в точке C пересекается с прямой,
делящей пополам угол B треугольника, в точке K, причём угол BKC
равен половине разности утроенного угла A и угла C треугольника.
Сумма сторон AC и AB равна
2 +
Около треугольника ABC описана окружность с центром в точке
O. Касательная к окружности в точке C пересекается с прямой,
делящей пополам угол B треугольника, в точке K, причём угол BKC
равен половине угла C треугольника. Сторона AB на
Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке B пересекается с прямой AC в точке K, причём угол AKB равен разности учетверённого угла A и угла B треугольника. Сторона AB в два раза длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|