ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$. Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному. В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку. В круг радиуса 1 помещено два треугольника,
площадь каждого из которых больше 1. Докажите, что эти
треугольники пересекаются.
Многоугольник площади B вписан в окружность
площади A и описан вокруг окружности площади C. Докажите,
что
2B Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые? При каком натуральном K величина Сколько осей симметрии может быть у треугольника?
Докажите, что площадь трапеции равна произведению средней линии на высоту.
Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0. Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны. а) В круг площади S вписан правильный n-угольник
площади S1, а около этого круга описан правильный n-угольник
площади S2. Докажите, что
S2 > S1S2.
a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Число сторон многоугольника A1...An нечётно. Докажите, что: Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей. В треугольнике ABC проведены высоты AA1 и BB1
и биссектрисы AA2 и BB2; вписанная окружность касается
сторон BC и AC в точках A3 и B3. Докажите, что
прямые
A1B1, A2B2 и A3B3 пересекаются в одной точке или
параллельны.
Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$. (а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина? (б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина? Последовательность чисел {an} задана условиями
a1 = 1, an + 1 = Докажите,
что
а) последовательность {an} ограничена; б) | a1000 - 2| < В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.
Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a = Докажите, что a ≡ b (mod m) тогда и только тогда, когда a – b делится на m. Четырехугольник ABCD вписанный. Докажите, что При каком наибольшем $n$ существует выпуклый многогранник с $n$ гранями, обладающий следующим свойством: для любой грани найдется точка вне многогранника, из которой видны остальные $n-1$ грани? Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
|
Страница: << 1 2 [Всего задач: 9]
К графикам функций $y=\cos x$ и $y=a \tan x$ провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого $a\neq0$.
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке