ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямые, касающиеся окружности с центром O в точках A и B, пересекаются в точке M. Найдите хорду AB, если отрезок MO делится ею на отрезки, равные 2 и 18. Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника. Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию: q = p + d, r = p + 2d. Докажите, что d делится на 6. а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Точка M делит сторону BC треугольника ABC в отношении
BM : MC = 2 : 5, Известно, что
Решите уравнение
(x2 + x)2 +
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места? Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей. α, β и γ - углы треугольника ABC. Докажите, что
Группа восьмиклассников решила поехать во время каникул на экскурсию в Углич. Ежемесячно каждый ученик вносил определённое количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49685 руб. Сколько было в группе учеников и какую сумму внёс каждый? Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал. Докажите, что ha = bc/2R.
На сколько нулей оканчивается число 100!? В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.
К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно.
(sin x, sin y, sin z) – возрастающая арифметическая прогрессия. Может ли последовательность (cos x, cos y, cos z) также являться арифметической прогрессией? 30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение? Из первых k простых чисел 2, 3, 5, ..., pk (k > 5) составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например, 3·5, 3·7·... ·pk, 11 и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что S + 1 разлагается в произведение более 2k простых сомножителей.
В параллелограмме лежат две окружности, касающиеся друг друга
и трёх сторон параллелограмма каждая. Радиус одной из окружностей
равен 1. Известно, что один из отрезков стороны параллелограмма от
вершины до точки касания равен
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и В таблице Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче? Мальвина записала по порядку 2016 обыкновенных правильных дробей: ½, ⅓, ⅔, ¼, 2/4, ¾, ... (в том числе, и сократимые). Дроби, значение которых меньше чем ½, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих? Найдите все такие натуральные k, что произведение первых k простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая). В клетки таблицы размером 9×9 расставили все натуральные числа от 1 до 81. Вычислили произведения чисел в каждой строке таблицы и получили набор из девяти чисел. Затем вычислили произведения чисел в каждом столбце таблицы и также получили набор из девяти чисел. |
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1119]
Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал.
В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.
В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)
На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)
В однокруговом турнире участвуют 10 шахматистов. Через какое наименьшее количество туров может оказаться так, что единоличный победитель уже выявился досрочно? (В каждом туре участники разбиваются на пары. Выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0).
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1119]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке