ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям. Решение |
Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 2247]
На сторонах BC и CD квадрата ABCD отмечены точки M и K соответственно так, что ∠BAM = ∠CKM = 30°. Найдите ∠AKD.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.
В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.
Дан выпуклый четырёхугольник ABCD. Пешеход Петя выходит из вершины A, идёт по стороне AB и далее по контуру четырёхугольника. Пешеход Вася выходит из вершины A одновременно с Петей, идёт по диагонали AC и одновременно с Петей приходит в C. Пешеход Толя выходит из вершины B в тот момент, когда её проходит Петя, идёт по диагонали BD и одновременно с Петей приходит в D. Скорости пешеходов постоянны.
Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|