ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности. Решение |
Страница: << 17 18 19 20 21 22 23 [Всего задач: 114]
Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.
Дан выпуклый четырёхугольник ABCD. Пусть I и J – центры окружностей, вписанных в треугольники ABC и ADC соответственно, а Ia и Ja – центры вневписанных окружностей треугольников ABC и ADC, вписанных в углы BAC и DAC соответственн). Докажите, что точка K пересечения прямых IJa и JIa лежит на биссектрисе угла BCD.
Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что PC = QC.
Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности.
Страница: << 17 18 19 20 21 22 23 [Всего задач: 114] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|