ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Высоты AA1, CC1 треугольника ABC пересекаются в точке H. HA – точка симметричная H относительно A. HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что A'C' || AC. Решение |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 829]
Высоты AA1, CC1 треугольника ABC пересекаются в точке H. HA – точка симметричная H относительно A. HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что A'C' || AC.
К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.
а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn. б) Докажите, что для треугольника верно и обратное утверждение: если на стороне A1A2 выбраны точки B1 и D2, на стороне A2A3 – точки B2 и D3, а на стороне A3A1 – точки B3 и D1 так, что A1B1·A2B2·A3B3 = A1D1·A2D2· A3D3, то, построив параллелограммы A1B1C1D1, A2B2C2D2 и A3B3C3D3, получим прямые A1C1, A2C2 и A3C3, пересекающиеся в одной точке.
Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Середины высот треугольника ABC лежат на одной прямой. Наибольшая сторона треугольника AB = 10 см.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|