ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Пусть AL и AK – внутренняя и внешняя биссектрисы треугольника ABC,  P – точка пересечения касательных к описанной окружности в точках B и C. Перпендикуляр, восставленный из точки L к BC, пересекает прямую AP в точке Q. Докажите, что Q лежит на средней линии треугольника LKP.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 122]      



Задача 64465

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116937

Темы:   [ Вписанные и описанные окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Серединный перпендикуляр к стороне AC неравнобедренного остроугольного треугольника ABC пересекает прямые AB и BC в точках B1 и B2 соответственно, а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C1 и C2 соответственно. Описанные окружности треугольников BB1B2 и CC1C2 пересекаются в точках P и Q. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PQ.

Прислать комментарий     Решение

Задача 116945

Темы:   [ Общая касательная к двум окружностям ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вневписанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.

Прислать комментарий     Решение

Задача 64988

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ Радикальная ось ]
Сложность: 4+
Классы: 10,11

В остроугольном треугольнике ABC  O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1 нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что описанные окружности треугольников AA1A', BB1B', CC1C', имеют общую точку.

Прислать комментарий     Решение

Задача 66246

Темы:   [ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радикальная ось ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть AL и AK – внутренняя и внешняя биссектрисы треугольника ABC,  P – точка пересечения касательных к описанной окружности в точках B и C. Перпендикуляр, восставленный из точки L к BC, пересекает прямую AP в точке Q. Докажите, что Q лежит на средней линии треугольника LKP.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .