ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника. Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число. На прямой даны четыре точки A, B, C, D в указанном
порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под
равными углами.
Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если а) AB = 5, BC = 7, CD = DA; б) AB = 7, BC = CD, DA = 9.
На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём AM = MN. 12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. Докажите, что
С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.
Найдите первые 99 знаков после запятой в разложении числа На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что AB1 : B1C = cn : an, BC1 : C1A = an : bn и CA1 : A1B = bn : cn (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x). На сторонах BC, CA и AB треугольника ABC взяты произвольные точки A1, B1 и C1. Пусть a = SAB1C1, b = SA1BC1, c = SA1B1C и u = SA1B1C1. Докажите, что
u3 + (a + b + c)u2
В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.
В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF. Определить четырёхзначное число, если деление этого числа на однозначное производится по следующей схеме:
На сфере радиуса 9 расположены точки L , L1 , M , M1 , N
и N1 . Отрезки LL1 , MM1 и NN1 попарно перпендикулярны
и пересекаются в точке A , отстоящей от центра сферы на расстоянии Докажите, что: б)
Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.
Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев. Придумайте какой-нибудь способ достроить треугольник Паскаля вверх. В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°. Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)². В пространстве дана плоскость П и точки A и B по одну сторону от П (AB не параллельно П). Рассматриваются сферы, проходящие через точки A и B, касающиеся плоскости П. Докажите, что точки касания этих сфер и плоскости П лежат на одной окружности. Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n? Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 258]
Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.
Имеется n случайных векторов вида (y1, y2, y3), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами (Y1, Y2, Y3).
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке
Каковы первые четыре цифры числа 11 + 2² + 3³ + ... + 999999 + 10001000?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке