|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В клетчатом квадрате 64*64 вырезали одну из клеток. Докажите, что оставшуюся часть квадрата можно разрезать на уголки из трех клеток. Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен. Докажите неравенство для положительных значений переменных: a³b + b³c + c³a ≥ abc(a + b + c). BD — биссектриса треугольника ABC, причём AD > CD. Докажите, что AB > BC.
В равносторонний треугольник ABC вписана полуокружность с центром O на стороне AB. Некоторая касательная к полуокружности пересекает стороны BC и CA в точках M и N соответственно, а
прямая, соединяющая точки касания сторон AB и AC с полуокружностью, пересекает отрезки OM и ON в точках Q и P. В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$. |
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 519]
В трапеции ABCD боковая сторона AB перпендикулярна основанию
BC. Окружность проходит через точки C и D и касается прямой AB в точке E.
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD = 3 и sin∠ACD·sin∠BCD = 1/3. Найдите расстояние от точки D до хорды AB.
Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.). Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.
Через центр O правильного треугольника ABC проведена прямая, пересекающая прямые BC, CA и AB в точках A1, B1 и C1.
Через ортоцентр остроугольного треугольника проведены две перпендикулярные прямые. Стороны треугольника высекают на каждой из этих прямых два отрезка: один, лежащий внутри треугольника, второй – вне его. Докажите, что произведение двух внутренних отрезков равно произведению двух внешних.
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 519] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|