Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Вниз   Решение


Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

ВверхВниз   Решение


На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN.

ВверхВниз   Решение


Ортогональные проекции треугольника ABC на две взаимно перпендикулярные плоскости являются правильными треугольниками со сторонами 1. Найдите периметр треугольника ABC , если известно, что AB = .

ВверхВниз   Решение


Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.

ВверхВниз   Решение


В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°.
Найдите угол ABM.

ВверхВниз   Решение


Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

ВверхВниз   Решение


Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

ВверхВниз   Решение


Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.

ВверхВниз   Решение


В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

ВверхВниз   Решение


Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если  $ \angle$CC1B1 = 30o, то либо  $ \angle$A = 60o, либо  $ \angle$B = 120o.

ВверхВниз   Решение


Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


В треугольнике ABC:  ∠C = 60°,  ∠A = 45°.  Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.

ВверхВниз   Решение


В равнобедренном прямоугольном треугольнике ABC на продолжении гипотенузы AB за точку B отложен отрезок BD, равный BC, и точка D соединена с C. Найдите стороны треугольника ADC, если катет BC = a.

ВверхВниз   Решение


Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^*$ такова, что $BICA^*$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 67373

Темы:   [ Изогональное сопряжение ]
[ Точка Микеля ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

В треугольнике $ABC$ точки $P$ и $Q$ изогонально сопряжены. Прямая $PQ$ пересекает окружность $ABC$ в точке $X$. Прямая, симметричная $BC$ относительно $PQ$, пересекает прямую $AX$ в точке $E$. Докажите, что точки $A$, $P$, $Q$, $E$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67377

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Точка Микеля ]
[ Гомотетия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^*$ такова, что $BICA^*$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.
Прислать комментарий     Решение


Задача 65368

Темы:   [ Метод ГМТ ]
[ Вписанные четырехугольники (прочее) ]
[ Точка Микеля ]
Сложность: 4-
Классы: 9,10,11

Дан выпуклый четырёхугольник. Постройте циркулем и линейкой точку, проекции которой на прямые, содержащие его стороны, являются вершинами параллелограмма.

Прислать комментарий     Решение

Задача 52389

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Микеля ]
Сложность: 4
Классы: 8,9

Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Прислать комментарий     Решение


Задача 64892

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 3+
Классы: 10,11

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .